Planning for Flexibility in Effective Vegetable Crop Rotations

Chuck Mohler Cornell University

Outline

Introductory comments
What we learned from the farmers
Tools for crop rotation planning
Basics of a planning procedure
Managing pests and weeds with rotation

Crop rotation defined by NOP

The practice of alternating the annual crops grown on a specific field in a planned pattern or sequence in successive crop years so that crops of the same species or family are not grown repeatedly without interruption on the same field.

Crop rotation

Crop rotation is always a good idea
 Critical for managing disease
 Nutrients
 Weeds
 Building soil quality
 [Insects]

Crop rotation can be incredibly complicated

Large variation in acreage among crops

- Some crops are in the ground more than one year
- Multiple plantings of some crops
- Some crops can only be grown on certain fields
- Cover crops between cash crops

NEON: Northeast Organic Network

Rotation planner project was part of NEON
 Large, 3 year, regional collaborative project funded by USDA.
 Researchers, farmers, farmer organizations, non-profits.

Started by asking expert farmers how they plan crop rotations 12 peer nominated exemplary farmers Put them in a room for 3 days Formal information extraction process – DACUM = Develop A CUrriculuM Originally devised for developing training manuals for industry The New England Small Farm Institute – Sue Ellen Johnson, Eric Toensmeier

The farmers

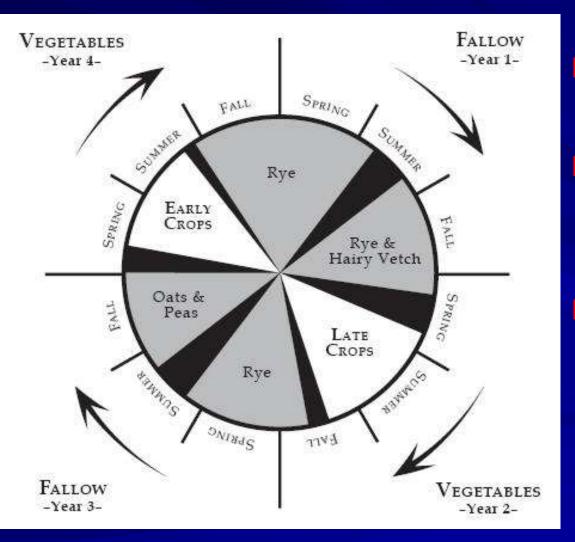
Bottom line

None of the 12 farmers develop long term rotation plans

- Forward planning horizon is 12 to 18 months

- They have a crop mix amounts of each crop that they want to grow
- They look at each field (bed) history, field characteristics, and place the most appropriate crop on that spot.
- They usually have a plan for the next cover crop and the next cash crop after that

The reason: Long-term plans always get derailed


 Weather conditions may delay planting or wipe out a crop and necessitate a substitute crop
 Market conditions change
 Labor supply may not be as expected

However...

Some did their ad hoc placement within the context of a larger scheme

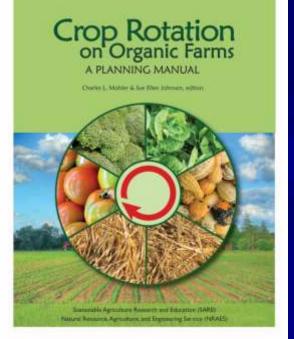
Drew Norman: 2-3 years in vegetables, then a 2-3 years in hay

Some other farms studied by NEON used general rotation schemes as well

Eric and Anne Nordell in N PA Have 12 half-acre strips. Sequence repeats 3 times Ad hoc placement of crops within strips.

Crop Rotation on Organic Farms: a Planning Manual

- **CH 1.** Introduction (CLM)
- CH 2. How expert farmers manage crop rotations (SEJ)
- CH 3. Biological and physical processes in crop rotation (Various)
- CH 4. Example crop rotations (SEJ)
- CH 5. A crop rotation planning procedure (CLM)
- CH 6. Crop rotation during transition from conventional agriculture (CLM)
- Ch 7. Crop rotation and intercropping (CLM and Kim Stoner)
- Reference Tables


Appendix tables

Crop characteristics
Crop sequence problems and opportunities
Sources of inoculum for crop diseases
Weed characteristics relevant to crop rotation
Crop diseases hosted by weeds
Method for creating a field map in Excel

Following: Preceding:	Pea	Lettuce	Potato	Tomato
Pea	XXXX	D, C-		
Lettuce	D	XXXX	D	D, C-
Potato		D	XXXX	D, I
Tomato		D	D, I	XXXX

D, I, W, C, N, S

Crop Rotation on Organic Farms: a Planning Manual

Purchase book:
 PALS Publishing
 http://palspublishing.cals.corne
 II.edu/

Free download: http://www.sare.org/Learning-Center/Books/Crop-Rotationon-Organic-Farms

Planning procedure

- Purpose is not to tell the farmer what to do
 Purpose is
 - to help farmer organize information
 - to make decisions in an orderly series of steps
 - to facilitate checking for problems

Goal: let anyone develop a plan that is as good as a really smart, experienced grower would produce.

Step 1 – Rotation goals

Choose rotation goals
 Prioritize goals

 Avoid soil-borne disease
 Grow N-fixing cover crops
 Suppress weeds

Step 2 – Do I want a general plan? "Simple" operation "Complex" operation **Continuous cropping Rest years** Low variation in **High variation in** acreage among crops acreage among crops **Few crops** Many crops **One cash crop/year Multiple cropping** Minor variation in soils, **Much variation in soils** topography etc. topography etc.

Focus on a general plan

Focus on crop sequencing

Write down the crop mix

Crop	Acres
Turnips	20
Beets	10
Carrots	30
Peas	20
Broccoli	20

Check family return times

Onion	3	Lilly
Potato	5	Nightsh.
Tomato	3	Nightsh.
Lettuce	6	Aster
Pepper	2	Nightsh.
W. squash	4	Cucurb.
S. squash	4	Cucurb.
Brassicas	6	Brassica
Total	30	

Nightshades have 10 A out of 30 A in production.

- **30/10 = 3**
- On average, a field will have a nightshade one year out of every 3 years
- Disease risk!
- Try for return times of at least 4 years for all families (except grasses)

Make a crop rotation planning map Equal area planning units Identify characteristics of each unit

Make a table

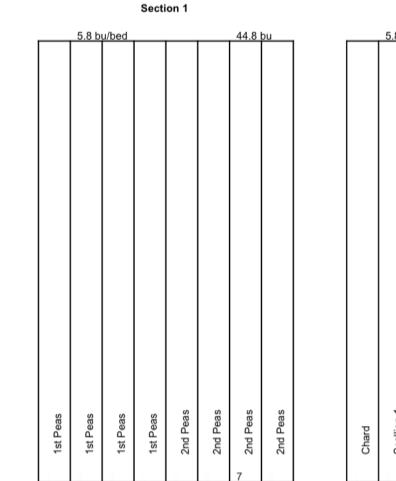
For each management unit:
 – List critical characteristics
 – Crops for last 3 years

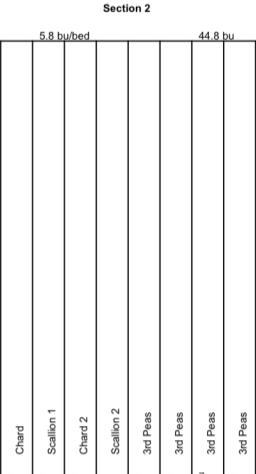
Example planning table

MU	Char	Three summers ago	Two winters ago	Two summers ago	Last winter	Last summer
9	early	Kohlrabi/ buckwheat	Oat	Pea/ Sorgh-sud	Oat	Carrot
10	early	Beet 5/ buckwheat	Oat	Pea/ Sorgh-sud	Oat	Carrot
11		Pepper	Oat	S. Squash	Oat	Pea/ Sorgh-sud
12		Pepper	Oat	S. Squash	Oat	Pea/ Sorgh-sud

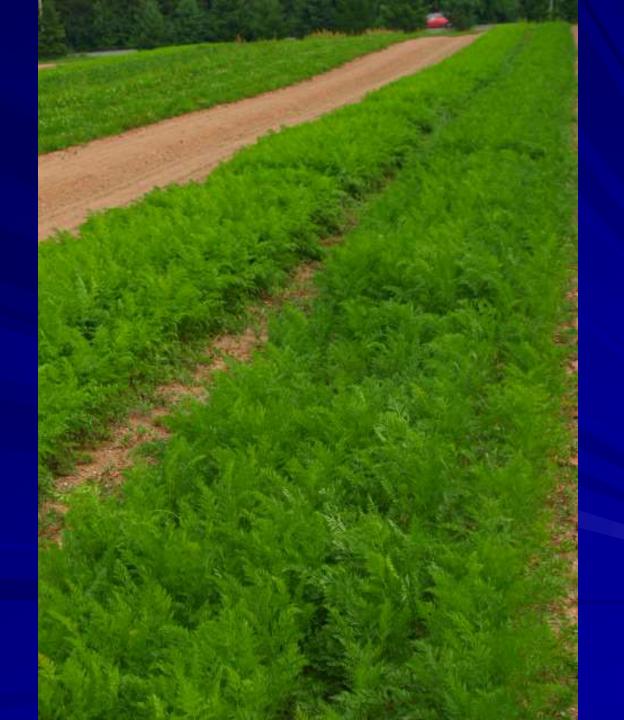
Sort the management units

1, put MU's with similar *critical* field conditions together
 2, put MU's with similar histories together


Plan future crop sequences – write crops onto the planning sheet


Next summer

- Cash crops already in the ground
- Families that are close to the maximum allowable return time
- High value crops that require special field conditions
- Other valuable crops that grow anywhere
- Less valuable crops that require special conditions
- Less valuable crops that grow anywhere



2006

Sample mapping in Excel

<u> Map</u>

SECTION	BED	CURRENT PLANTING	DATE	SECOND PLANTING	DATE	COVER CROP	DATE
1	1	1st Peas	26-Mar	Lettuce 15	23-Jul	none	
6 bedunits	2	1st Peas	26-Mar	Lettuce 15	23-Jul	none	
Total 48	3	1st Peas	26-Mar	Dill, Cilantro 16	30-Jul	none	
	4	1st Peas	26-Mar	Lettuce 17	6-Aug	none	
	5	2nd Peas	2-Apr	Lettuce 17	6-Aug	none	
	6	2nd Peas	2-Apr	Lettuce 16	30-Jul	none	
	7	2nd Peas	2-Apr	Lettuce 16	30-Jul	none	
	8	2nd Peas	2-Apr	Spinach 16, 17	30-Jul	none	
SECTION	BED	CURRENT PLANTING	DATE	SECOND PLANTING	DATE	COVER CROP	DATE
2	1	Chard	9-Apr	Spinach 21	3-Sep	none	
6 bedunits	2	Scallion 1	9-Apr	Spinach 21	3-Sep	none	
Total 48	3	Chard 2	23-Apr	Lettuce 21	3-Sep	none	
	4	Scallion 2	23-Apr	Lettuce 21	3-Sep	none	
	5	3rd Peas	9-Apr	Lettuce 21	3-Sep	none	
	6	3rd Peas	9-Apr	Lettuce 20	27-Aug	none	
	7	3rd Peas	9-Apr	Lettuce 20	27-Aug	none	
	8	3rd Peas	9-Apr	Lettuce 20	27-Aug	none	

Future years

Check next summer's crop, mix
Plan two summers from now
Now go back and fill in cover crops between next summer and 2 summers from now

Put plans on maps and walk

Put the plans on maps, one map per year
Take the maps to the field – take notes

"Farm the land in your head"

What could go wrong?

Note contingency plans !

An ecological perspective on rotation and pest management

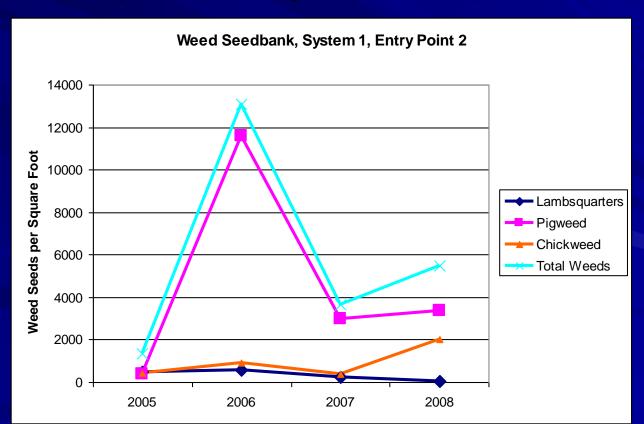
Annual crops

- First year of ecological succession
- Crop is at outbreak density & abundance
- Annual plants in nature escape by being unpredictable in space and time
- If we grow the same species repeatedly, in a field
 - then it isn't unpredictable
 - And it gets hammered
- Meanwhile weeds are moving in to drive succession forward

Rotation can't solve all problems

Pest	agent	Rotation	Notes
Tomato bacterial spot	Xanthomonas campestirs pv. vesicatoria	Y (1-3)	seed borne
Club root	Plasmodiophora brassicae	Y (7)	weeds
Damping off	Pythium spp.	N	saprobe
Late blight	Phytophthora infestans	Ν	wind blown
Corn root worm	Diabrotica spp.	Y	life cycle
Imported cabbageworm	Pieris rapae	Ν	good flyer

Crop rotation for weed control


Multi-year tactics.
 Often involves manipulation of the weed seed bank.
 Requires integration with tillage practices.

Tilled fallow

Tillage promotes weed seed germination. - Firm seed bed Then shallowly till again to kill weeds Repeat. Plant

Follow weedy crops with crops that are easy to keep weeded
This allows depletion of the seed bank built up in the previous year

Rotate between crops with different seasonality

Early summer planted

📩 T

Spring planted

Mid-summer planted

Work cover crops into the rotation

Sow heavy for best weed suppression.

Winter cover can suppress quackgrass

Avoid cover crops that cause weed problems

Example: hairy vetch can be a bad weed in wheat.

Rotate annuals with sod crops

 Repeated mowing depletes perennial weeds
 Annuals

Annuals can't reproduce so seed bank declines

Conclusions – lots of aspects to good rotation planning Several ways to use the book Reference Basic principles and concepts of crop rotation Look up information Inspiration – what do other farmers do

Systematic planning too

Contact information

Charles L. Mohler clm11@cornell.edu 607-255-0199 https://weedecology.css.cornell.edu/ Department of Crop and Soil Sciences 907 Bradfield Hall **Cornell university** Ithaca NY 14853